

    
      
          
            
  
Welcome to ndex2’s documentation!

Contents:



	NiceCXNetwork module
	Methods for building niceCX
	Node methods

	Edge methods

	Network methods





	Methods for accessing niceCX properties
	Node methods

	Edge methods

	Network methods





	Misc niceCX methods

	Deprecated NiceCXNetwork methods

	Supported data types

	Methods for creating niceCX from other data models

	Client access to NDEx server API





	ndex2
	NiceCXNetwork module
	Methods for building niceCX

	Methods for accessing niceCX properties

	Misc niceCX methods

	Deprecated NiceCXNetwork methods

	Supported data types

	Methods for creating niceCX from other data models

	Client access to NDEx server API
















Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
NiceCXNetwork module

The NiceCXNetwork class provides a data model for working with NDEx networks.  Methods are provided to add nodes, edges, node attributes, edge attributes, etc.  Once a NiceCXNetwork data object is populated it can be saved to the NDEx server by calling either upload_to() to create a new network or update_to() to update an existing network.

To see deprecated methods go to Deprecated NiceCXNetwork methods


Methods for building niceCX

see also
this notebook [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NiceCX%20v2.0%20Tutorial.ipynb]


Node methods




Edge methods




Network methods






Methods for accessing niceCX properties

see also
this notebook [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NiceCX%20v2.0%20navigating%20the%20network.ipynb]


Node methods




Edge methods




Network methods






Misc niceCX methods




Deprecated NiceCXNetwork methods




Supported data types

The following data types are supported in methods that accept type


Example:


set_edge_attribute(0, 'weight', 0.5, type='double')








	string


	double


	boolean


	integer


	long


	list_of_string


	list_of_double


	list_of_boolean


	list_of_integer


	list_of_long







Methods for creating niceCX from other data models


	
ndex2.create_nice_cx_from_raw_cx(cx)

	Create a NiceCXNetwork from a CX json object. (see http://www.home.ndexbio.org/data-model)


	Parameters

	cx – a valid CX document



	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_file(path)

	Create a NiceCXNetwork from a file that is in the CX format.


	Parameters

	path – the path of the CX file



	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_networkx(G)

	Creates a NiceCXNetwork based on a networkx graph. The resulting NiceCXNetwork
contains the nodes edges and their attributes from the networkx graph and also
preserves the graph ‘pos’ attribute as a CX cartesian coordinates aspect.
Node name is taken from the networkx node id. Node ‘represents’ is
taken from the networkx node attribute ‘represents’


	Parameters

	G (networkx graph) – networkx graph



	Returns

	NiceCXNetwork



	Return type

	NiceCXNetwork










	
ndex2.create_nice_cx_from_pandas(df, source_field=None, target_field=None, source_node_attr=[], target_node_attr=[], edge_attr=[], edge_interaction=None, source_represents=None, target_represents=None)

	Create a NiceCXNetwork from a pandas dataframe in which each row
specifies one edge in the network.

If only the df argument is provided the dataframe is treated as ‘SIF’ format,
where the first two columns specify the source and target node ids of the edge
and all other columns are ignored. The edge interaction is defaulted to “interacts-with”

If both the source_field and target_field arguments are provided, the those and any other
arguments refer to headers in the dataframe, controlling the mapping of columns to
the attributes of nodes, and edges in the resulting NiceCXNetwork. If a header is not
mapped the corresponding column is ignored. If the edge_interaction is not specified it
defaults to “interacts-with”


	Parameters

	
	df – pandas dataframe to process


	source_field – header name specifying the name of the source node.


	target_field – header name specifying the name of the target node.


	source_node_attr – list of header names specifying attributes of the source node.


	target_node_attr – list of header names specifying attributes of the target node.


	edge_attr – list of header names specifying attributes of the edge.


	edge_interaction – the relationship between the source node and the target node, defaulting to “interacts-with”






	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_server(server, username=None, password=None, uuid=None)

	Create a NiceCXNetwork based on a network retrieved from NDEx, specified by its UUID.
If the network is not public, then username and password arguments for an account on
the server with permission to access the network must be supplied.


	Parameters

	
	server – the URL of the NDEx server hosting the network.


	username – the user name of an account with permission to access the network.


	password – the password of an account with permission to access the network.


	uuid – the UUID of the network.






	Returns

	NiceCXNetwork












Client access to NDEx server API


	
class ndex2.client.Ndex2(host=None, username=None, password=None, update_status=False, debug=False, user_agent='')

	A class to facilitate communication with an NDEx server.

If host is not provided it will default to the NDEx public server.  UUID is required


	
add_networks_to_networkset(set_id, networks)

	Add networks to a network set.  User must have visibility of all networks being added


	Parameters

	
	set_id (basestring) – network set id


	networks (list of strings) – networks that will be added to the set






	Returns

	None



	Return type

	None










	
create_networkset(name, description)

	Creates a new network set


	Parameters

	
	name (string) – Network set name


	description (string) – Network set description






	Returns

	URI of the newly created network set



	Return type

	string










	
delete_network(network_id, retry=5)

	Deletes the specified network from the server


	Parameters

	
	network_id (string) – Network id


	retry (int) – Number of times to retry if deleting fails






	Returns

	Error json if there is an error.  Blank



	Return type

	string










	
delete_networks_from_networkset(set_id, networks, retry=5)

	Removes network(s) from a network set.


	Parameters

	
	set_id (basestring) – network set id


	networks (list of strings) – networks that will be removed from the set


	retry (int) – Number of times to retry






	Returns

	None



	Return type

	None










	
get_neighborhood(network_id, search_string, search_depth=1, edge_limit=2500)

	Get the CX for a subnetwork of the network specified by UUID network_id and a traversal of search_depth steps
around the nodes found by search_string.


	Parameters

	
	network_id (str) – The UUID of the network.


	search_string (str) – The search string used to identify the network neighborhood.


	search_depth (int) – The depth of the neighborhood from the core nodes identified.


	edge_limit (int) – The maximum size of the neighborhood.






	Returns

	The CX json object.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]










	
get_neighborhood_as_cx_stream(network_id, search_string, search_depth=1, edge_limit=2500, error_when_limit=True)

	Get a CX stream for a subnetwork of the network specified by UUID network_id and a traversal of search_depth
steps around the nodes found by search_string.


	Parameters

	
	network_id (str) – The UUID of the network.


	search_string (str) – The search string used to identify the network neighborhood.


	search_depth (int) – The depth of the neighborhood from the core nodes identified.


	edge_limit (int) – The maximum size of the neighborhood.


	error_when_limit (boolean) – Default value is true. If this value is true the server will stop streaming the network when it hits the edgeLimit, add success: false and error: “EdgeLimitExceeded” in the status aspect and close the CX stream. If this value is set to false the server will return a subnetwork with edge count up to edgeLimit. The status aspect will be a success, and a network attribute {“EdgeLimitExceeded”: “true”} will be added to the returned network only if the server hits the edgeLimit..






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
get_network_as_cx_stream(network_id)

	Get the existing network with UUID network_id from the NDEx connection as a CX stream.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
get_network_ids_for_user(username)

	Get the network uuids owned by the user


	Parameters

	username (str) – users NDEx username



	Returns

	list of uuids










	
get_network_set(set_id)

	Gets the network set information including the list of networks


	Parameters

	set_id (basestring) – network set id



	Returns

	network set information



	Return type

	dict










	
get_network_summary(network_id)

	Gets information about a network.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	Summary



	Return type

	dict










	
get_sample_network(network_id)

	Gets the sample network


	Parameters

	network_id (string) – Network id



	Returns

	Sample network



	Return type

	list of dicts in cx format










	
get_task_by_id(task_id)

	Retrieves a task by id


	Parameters

	task_id (string) – Task id



	Returns

	Task



	Return type

	dict










	
get_user_by_username(username)

	Gets the user id by user name


	Parameters

	username (string) – User name



	Returns

	User id



	Return type

	string










	
get_user_network_summaries(username, offset=0, limit=1000)

	Get a list of network summaries for networks owned by specified user.
It returns not only the networks that the user owns but also the networks that are
shared with them directly.


	Parameters

	
	username (str) – the username of the network owner


	offset (int) – the starting position of the network search


	limit – 






	Returns

	list of uuids



	Return type

	list










	
grant_network_to_user_by_username(username, network_id, permission)

	Grants permission to network for the given user name


	Parameters

	
	username (string) – User name


	network_id (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
grant_networks_to_group(groupid, networkids, permission='READ')

	Set group permission for a set of networks


	Parameters

	
	groupid (string) – Group id


	networkids (list) – List of network ids


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
grant_networks_to_user(userid, networkids, permission='READ')

	Gives read permission to specified networks for the provided user


	Parameters

	
	userid (string) – User id


	networkids (list of strings) – Network ids


	permission (string (default is READ)) – Network permissions






	Returns

	none



	Return type

	none










	
make_network_private(network_id)

	Makes the network specified by the network_id private.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
make_network_public(network_id)

	Makes the network specified by the network_id public.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
save_cx_stream_as_new_network(cx_stream, visibility=None)

	Create a new network from a CX stream.


	Parameters

	
	cx_stream (BytesIO) – IO stream of cx


	visibility (string) – Sets the visibility (PUBLIC or PRIVATE)






	Returns

	Response data



	Return type

	string or dict










	
save_new_network(cx, visibility=None)

	Create a new network (cx) on the server


	Parameters

	
	cx (list of dicts) – Network cx


	visibility (string) – Sets the visibility (PUBLIC or PRIVATE)






	Returns

	Response data



	Return type

	string or dict










	
search_networks(search_string='', account_name=None, start=0, size=100, include_groups=False)

	Search for networks based on the search_text, optionally limited to networks owned by the specified
account_name.


	Parameters

	
	search_string (str) – The text to search for.


	account_name (str) – The account to search


	start (int) – The number of blocks to skip. Usually zero, but may be used to page results.


	size (int) – The size of the block.


	include_groups – 






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
set_network_properties(network_id, network_properties)

	Sets network properties


	Parameters

	
	network_id (string) – Network id


	network_properties (list) – List of NDEx property value pairs






	Returns

	



	Return type

	










	
set_network_system_properties(network_id, network_properties)

	Set network system properties


	Parameters

	
	network_id (string) – Network id


	network_properties (dict of NDEx network property value pairs) – Network properties






	Returns

	Result



	Return type

	dict










	
set_read_only(network_id, value)

	Sets the read only flag on the specified network


	Parameters

	
	network_id (string) – Network id


	value (bool) – Read only value






	Returns

	Result



	Return type

	dict










	
update_cx_network(cx_stream, network_id)

	Update the network specified by UUID network_id using the CX stream cx_stream.


	Parameters

	
	cx_stream – The network stream.


	network_id (str) – The UUID of the network.






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
update_network_group_permission(groupid, networkid, permission)

	Updated group permissions


	Parameters

	
	groupid (string) – Group id


	networkid (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
update_network_profile(network_id, network_profile)

	Updates the network profile
Any profile attributes specified will be updated but attributes that are not specified will
have no effect - omission of an attribute does not mean deletion of that attribute.
The network profile attributes that can be updated by this method are: ‘name’, ‘description’ and ‘version’.


	Parameters

	
	network_id (string) – Network id


	network_profile (dict) – Network profile






	Returns

	



	Return type

	










	
update_network_user_permission(userid, networkid, permission)

	Updated network user permission


	Parameters

	
	userid (string) – User id


	networkid (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict



















          

      

      

    

  

    
      
          
            
  
ndex2



	NiceCXNetwork module
	Methods for building niceCX
	Node methods

	Edge methods

	Network methods





	Methods for accessing niceCX properties
	Node methods

	Edge methods

	Network methods





	Misc niceCX methods

	Deprecated NiceCXNetwork methods

	Supported data types

	Methods for creating niceCX from other data models

	Client access to NDEx server API













          

      

      

    

  

    
      
          
            
  
NiceCXNetwork module

The NiceCXNetwork class provides a data model for working with NDEx networks.  Methods are provided to add nodes, edges, node attributes, edge attributes, etc.  Once a NiceCXNetwork data object is populated it can be saved to the NDEx server by calling either upload_to() to create a new network or update_to() to update an existing network.

To see deprecated methods go to Deprecated NiceCXNetwork methods


Methods for building niceCX

see also
this notebook [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NiceCX%20v2.0%20Tutorial.ipynb]


Node methods




Edge methods




Network methods






Methods for accessing niceCX properties

see also
this notebook [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NiceCX%20v2.0%20navigating%20the%20network.ipynb]


Node methods




Edge methods




Network methods






Misc niceCX methods




Deprecated NiceCXNetwork methods




Supported data types

The following data types are supported in methods that accept type


Example:


set_edge_attribute(0, 'weight', 0.5, type='double')








	string


	double


	boolean


	integer


	long


	list_of_string


	list_of_double


	list_of_boolean


	list_of_integer


	list_of_long







Methods for creating niceCX from other data models


	
ndex2.create_nice_cx_from_raw_cx(cx)

	Create a NiceCXNetwork from a CX json object. (see http://www.home.ndexbio.org/data-model)


	Parameters

	cx – a valid CX document



	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_file(path)

	Create a NiceCXNetwork from a file that is in the CX format.


	Parameters

	path – the path of the CX file



	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_networkx(G)

	Creates a NiceCXNetwork based on a networkx graph. The resulting NiceCXNetwork
contains the nodes edges and their attributes from the networkx graph and also
preserves the graph ‘pos’ attribute as a CX cartesian coordinates aspect.
Node name is taken from the networkx node id. Node ‘represents’ is
taken from the networkx node attribute ‘represents’


	Parameters

	G (networkx graph) – networkx graph



	Returns

	NiceCXNetwork



	Return type

	NiceCXNetwork










	
ndex2.create_nice_cx_from_pandas(df, source_field=None, target_field=None, source_node_attr=[], target_node_attr=[], edge_attr=[], edge_interaction=None, source_represents=None, target_represents=None)

	Create a NiceCXNetwork from a pandas dataframe in which each row
specifies one edge in the network.

If only the df argument is provided the dataframe is treated as ‘SIF’ format,
where the first two columns specify the source and target node ids of the edge
and all other columns are ignored. The edge interaction is defaulted to “interacts-with”

If both the source_field and target_field arguments are provided, the those and any other
arguments refer to headers in the dataframe, controlling the mapping of columns to
the attributes of nodes, and edges in the resulting NiceCXNetwork. If a header is not
mapped the corresponding column is ignored. If the edge_interaction is not specified it
defaults to “interacts-with”


	Parameters

	
	df – pandas dataframe to process


	source_field – header name specifying the name of the source node.


	target_field – header name specifying the name of the target node.


	source_node_attr – list of header names specifying attributes of the source node.


	target_node_attr – list of header names specifying attributes of the target node.


	edge_attr – list of header names specifying attributes of the edge.


	edge_interaction – the relationship between the source node and the target node, defaulting to “interacts-with”






	Returns

	NiceCXNetwork










	
ndex2.create_nice_cx_from_server(server, username=None, password=None, uuid=None)

	Create a NiceCXNetwork based on a network retrieved from NDEx, specified by its UUID.
If the network is not public, then username and password arguments for an account on
the server with permission to access the network must be supplied.


	Parameters

	
	server – the URL of the NDEx server hosting the network.


	username – the user name of an account with permission to access the network.


	password – the password of an account with permission to access the network.


	uuid – the UUID of the network.






	Returns

	NiceCXNetwork












Client access to NDEx server API


	
class ndex2.client.Ndex2(host=None, username=None, password=None, update_status=False, debug=False, user_agent='')

	A class to facilitate communication with an NDEx server.

If host is not provided it will default to the NDEx public server.  UUID is required


	
add_networks_to_networkset(set_id, networks)

	Add networks to a network set.  User must have visibility of all networks being added


	Parameters

	
	set_id (basestring) – network set id


	networks (list of strings) – networks that will be added to the set






	Returns

	None



	Return type

	None










	
create_networkset(name, description)

	Creates a new network set


	Parameters

	
	name (string) – Network set name


	description (string) – Network set description






	Returns

	URI of the newly created network set



	Return type

	string










	
delete_network(network_id, retry=5)

	Deletes the specified network from the server


	Parameters

	
	network_id (string) – Network id


	retry (int) – Number of times to retry if deleting fails






	Returns

	Error json if there is an error.  Blank



	Return type

	string










	
delete_networks_from_networkset(set_id, networks, retry=5)

	Removes network(s) from a network set.


	Parameters

	
	set_id (basestring) – network set id


	networks (list of strings) – networks that will be removed from the set


	retry (int) – Number of times to retry






	Returns

	None



	Return type

	None










	
get_neighborhood(network_id, search_string, search_depth=1, edge_limit=2500)

	Get the CX for a subnetwork of the network specified by UUID network_id and a traversal of search_depth steps
around the nodes found by search_string.


	Parameters

	
	network_id (str) – The UUID of the network.


	search_string (str) – The search string used to identify the network neighborhood.


	search_depth (int) – The depth of the neighborhood from the core nodes identified.


	edge_limit (int) – The maximum size of the neighborhood.






	Returns

	The CX json object.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]










	
get_neighborhood_as_cx_stream(network_id, search_string, search_depth=1, edge_limit=2500, error_when_limit=True)

	Get a CX stream for a subnetwork of the network specified by UUID network_id and a traversal of search_depth
steps around the nodes found by search_string.


	Parameters

	
	network_id (str) – The UUID of the network.


	search_string (str) – The search string used to identify the network neighborhood.


	search_depth (int) – The depth of the neighborhood from the core nodes identified.


	edge_limit (int) – The maximum size of the neighborhood.


	error_when_limit (boolean) – Default value is true. If this value is true the server will stop streaming the network when it hits the edgeLimit, add success: false and error: “EdgeLimitExceeded” in the status aspect and close the CX stream. If this value is set to false the server will return a subnetwork with edge count up to edgeLimit. The status aspect will be a success, and a network attribute {“EdgeLimitExceeded”: “true”} will be added to the returned network only if the server hits the edgeLimit..






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
get_network_as_cx_stream(network_id)

	Get the existing network with UUID network_id from the NDEx connection as a CX stream.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
get_network_ids_for_user(username)

	Get the network uuids owned by the user


	Parameters

	username (str) – users NDEx username



	Returns

	list of uuids










	
get_network_set(set_id)

	Gets the network set information including the list of networks


	Parameters

	set_id (basestring) – network set id



	Returns

	network set information



	Return type

	dict










	
get_network_summary(network_id)

	Gets information about a network.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	Summary



	Return type

	dict










	
get_sample_network(network_id)

	Gets the sample network


	Parameters

	network_id (string) – Network id



	Returns

	Sample network



	Return type

	list of dicts in cx format










	
get_task_by_id(task_id)

	Retrieves a task by id


	Parameters

	task_id (string) – Task id



	Returns

	Task



	Return type

	dict










	
get_user_by_username(username)

	Gets the user id by user name


	Parameters

	username (string) – User name



	Returns

	User id



	Return type

	string










	
get_user_network_summaries(username, offset=0, limit=1000)

	Get a list of network summaries for networks owned by specified user.
It returns not only the networks that the user owns but also the networks that are
shared with them directly.


	Parameters

	
	username (str) – the username of the network owner


	offset (int) – the starting position of the network search


	limit – 






	Returns

	list of uuids



	Return type

	list










	
grant_network_to_user_by_username(username, network_id, permission)

	Grants permission to network for the given user name


	Parameters

	
	username (string) – User name


	network_id (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
grant_networks_to_group(groupid, networkids, permission='READ')

	Set group permission for a set of networks


	Parameters

	
	groupid (string) – Group id


	networkids (list) – List of network ids


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
grant_networks_to_user(userid, networkids, permission='READ')

	Gives read permission to specified networks for the provided user


	Parameters

	
	userid (string) – User id


	networkids (list of strings) – Network ids


	permission (string (default is READ)) – Network permissions






	Returns

	none



	Return type

	none










	
make_network_private(network_id)

	Makes the network specified by the network_id private.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
make_network_public(network_id)

	Makes the network specified by the network_id public.


	Parameters

	network_id (str) – The UUID of the network.



	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
save_cx_stream_as_new_network(cx_stream, visibility=None)

	Create a new network from a CX stream.


	Parameters

	
	cx_stream (BytesIO) – IO stream of cx


	visibility (string) – Sets the visibility (PUBLIC or PRIVATE)






	Returns

	Response data



	Return type

	string or dict










	
save_new_network(cx, visibility=None)

	Create a new network (cx) on the server


	Parameters

	
	cx (list of dicts) – Network cx


	visibility (string) – Sets the visibility (PUBLIC or PRIVATE)






	Returns

	Response data



	Return type

	string or dict










	
search_networks(search_string='', account_name=None, start=0, size=100, include_groups=False)

	Search for networks based on the search_text, optionally limited to networks owned by the specified
account_name.


	Parameters

	
	search_string (str) – The text to search for.


	account_name (str) – The account to search


	start (int) – The number of blocks to skip. Usually zero, but may be used to page results.


	size (int) – The size of the block.


	include_groups – 






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
set_network_properties(network_id, network_properties)

	Sets network properties


	Parameters

	
	network_id (string) – Network id


	network_properties (list) – List of NDEx property value pairs






	Returns

	



	Return type

	










	
set_network_system_properties(network_id, network_properties)

	Set network system properties


	Parameters

	
	network_id (string) – Network id


	network_properties (dict of NDEx network property value pairs) – Network properties






	Returns

	Result



	Return type

	dict










	
set_read_only(network_id, value)

	Sets the read only flag on the specified network


	Parameters

	
	network_id (string) – Network id


	value (bool) – Read only value






	Returns

	Result



	Return type

	dict










	
update_cx_network(cx_stream, network_id)

	Update the network specified by UUID network_id using the CX stream cx_stream.


	Parameters

	
	cx_stream – The network stream.


	network_id (str) – The UUID of the network.






	Returns

	The response.



	Return type

	response object [http://docs.python-requests.org/en/master/user/quickstart/#response-content]












	
update_network_group_permission(groupid, networkid, permission)

	Updated group permissions


	Parameters

	
	groupid (string) – Group id


	networkid (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict










	
update_network_profile(network_id, network_profile)

	Updates the network profile
Any profile attributes specified will be updated but attributes that are not specified will
have no effect - omission of an attribute does not mean deletion of that attribute.
The network profile attributes that can be updated by this method are: ‘name’, ‘description’ and ‘version’.


	Parameters

	
	network_id (string) – Network id


	network_profile (dict) – Network profile






	Returns

	



	Return type

	










	
update_network_user_permission(userid, networkid, permission)

	Updated network user permission


	Parameters

	
	userid (string) – User id


	networkid (string) – Network id


	permission (string) – Network permission






	Returns

	Result



	Return type

	dict



















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	
       	
       ndex2	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | G
 | M
 | N
 | S
 | U
 


A


  	
      	add_networks_to_networkset() (ndex2.client.Ndex2 method)


  





C


  	
      	create_networkset() (ndex2.client.Ndex2 method)


      	create_nice_cx_from_file() (in module ndex2)


      	create_nice_cx_from_networkx() (in module ndex2)


  

  	
      	create_nice_cx_from_pandas() (in module ndex2)


      	create_nice_cx_from_raw_cx() (in module ndex2)


      	create_nice_cx_from_server() (in module ndex2)


  





D


  	
      	delete_network() (ndex2.client.Ndex2 method)


  

  	
      	delete_networks_from_networkset() (ndex2.client.Ndex2 method)


  





G


  	
      	get_neighborhood() (ndex2.client.Ndex2 method)


      	get_neighborhood_as_cx_stream() (ndex2.client.Ndex2 method)


      	get_network_as_cx_stream() (ndex2.client.Ndex2 method)


      	get_network_ids_for_user() (ndex2.client.Ndex2 method)


      	get_network_set() (ndex2.client.Ndex2 method)


      	get_network_summary() (ndex2.client.Ndex2 method)


  

  	
      	get_sample_network() (ndex2.client.Ndex2 method)


      	get_task_by_id() (ndex2.client.Ndex2 method)


      	get_user_by_username() (ndex2.client.Ndex2 method)


      	get_user_network_summaries() (ndex2.client.Ndex2 method)


      	grant_network_to_user_by_username() (ndex2.client.Ndex2 method)


      	grant_networks_to_group() (ndex2.client.Ndex2 method)


      	grant_networks_to_user() (ndex2.client.Ndex2 method)


  





M


  	
      	make_network_private() (ndex2.client.Ndex2 method)


  

  	
      	make_network_public() (ndex2.client.Ndex2 method)


  





N


  	
      	Ndex2 (class in ndex2.client)


  

  	
      	ndex2 (module)


  





S


  	
      	save_cx_stream_as_new_network() (ndex2.client.Ndex2 method)


      	save_new_network() (ndex2.client.Ndex2 method)


      	search_networks() (ndex2.client.Ndex2 method)


  

  	
      	set_network_properties() (ndex2.client.Ndex2 method)


      	set_network_system_properties() (ndex2.client.Ndex2 method)


      	set_read_only() (ndex2.client.Ndex2 method)


  





U


  	
      	update_cx_network() (ndex2.client.Ndex2 method)


      	update_network_group_permission() (ndex2.client.Ndex2 method)


  

  	
      	update_network_profile() (ndex2.client.Ndex2 method)


      	update_network_user_permission() (ndex2.client.Ndex2 method)


  







          

      

      

    

  

    
      
          
            
  
History


2.0.1 (2019-01-03)


	Fixed bug where logs directory is created within
the package installation directory.
Issue #26 [https://github.com/ndexbio/ndex2-client/issues/26]










          

      

      

    

  

    
      
          
            
  
NDEx2 Client v2.0


Overview

The NDEx2 Client v2.0 Python module provides methods to access NDEx via
the NDEx Server API. It also provides methods for common operations on
networks. It includes the NiceCX network object class for convenient
NDEx access and as a data model for applications.




Jupyter Notebook Tutorials


	Basic Use of the NDEx2 Client:  NDEx2 Client v2.0
Tutorial [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NDEx2%20Client%20v2.0%20Tutorial.ipynb]


	Working with the NiceCX Network Class: NiceCX v2.0
Tutorial [https://github.com/ndexbio/ndex-jupyter-notebooks/blob/master/notebooks/NiceCX%20v2.0%20Tutorial.ipynb]




To use these tutorials, clone the ndex-jupyter-notebooks
repository [https://github.com/ndexbio/ndex-jupyter-notebooks] to
your local machine and start Jupyter Notebooks in the project directory.

For information on installing and using Jupyter Notebooks, go to
jupyter.org [http://jupyter.org/]




Requirements

The NDEx2 Client 2.0 module requires Python 3.6+ and the latest version
of the PIP Python package manager for installation. Click
here [https://pypi.python.org/pypi/pip] to download the PIP Python
package.




Installing the NDEx2 Client Module

The NDEx2 Client 2.0 module can be installed from the Python Package
Index (PyPI) repository using PIP:


pip install ndex2




If you already have an older version of the ndex2 module installed, you
can use this command instead:


pip install –upgrade ndex2







NDEx2 Client Objects

The NDEx2 Client provides an interface to an NDEx server that is managed
via a client object class. An NDEx2 Client object can be used to access
an NDEx server either anonymously or using a specific user account. For
each NDEx server and user account that you want to use in your script or
application, you create an NDEx2 Client instance. In this example, a
client object is created to access the public NDEx server.

import ndex2.client
anon_ndex=ndex2.client.Ndex2("http://public.ndexbio.org")





A client object using a specific user account can perform operations
requiring authentication, such as saving networks to that account.

my_account="your account"
my_password="your password"
my_ndex=ndex2.client.Ndex2("http://public.ndexbio.org", my_account, my_password)






NDEx Client Object Methods:


Status


update_status()


	Updates the client object status attribute with the status of the
NDEx Server.









Users


get_user_by_username(username)


	Returns a user object corresponding to the provided username


	Error if this account is not found


	If the user account has not been verified by the user yet, the
returned object will contain no user UUID and the isVerified field
will be false.









Network


save_new_network(cx)


	Creates a new network from cx, a python dict in CX format.







save_cx_stream_as_new_network(cx_stream)


	Creates a network from the byte stream cx_stream.







update_cx_network(cx_stream, network_id)


	Updates network specified by network_id with the new content from
the byte stream cx_stream.


	Errors if the network_id does not correspond to an existing network
on the NDEx Server which the authenticated user either owns or has
WRITE permission.


	Errors if the cx_stream data is larger than the maximum size allowed
by the NDEx server.







delete_network(network_id)


	Deletes the network specified by network_id.


	There is no method to undo a deletion, so care should be exercised.


	The specified network must be owned by the authenticated user.







get_network_summary(network_id)


	Retrieves a NetworkSummary JSON object from the network specified by
network_id and returns it as a Python dict.


	A NetworkSummary object provides useful information about the
network, a mixture of network profile information (properties
expressed in special aspects of the network CX), network properties
(properties expressed in the networkAttributes aspect of the network
CX) and network system properties (properties expressing how the
network is stored on the server, not part of the network CX).





  
    	Attribute


    	Description


    	Type


  

  
    	creationTme


    	Time at which the network was created


    	timeStamp


  

  
    	description


    	Text description of the network, same meaning as dc:description


    	string


  

  
    	edgeCount


    	The number of edge objects in the network


    	integer


  

  
    	errorMessage


    	If this network is not a valid CX network, this field holds the error
message produced by the CX network validator.


    	string


  

  
    	externalId


    	UUID of the network


    	string


  

  
    	isDeleted


    	True if the network is marked as deleted


    	boolean


  

  
    	isReadOnly


    	True if the network is marked as readonly


    	boolean


  

  
    	isShowCase


    	True if the network is showcased


    	boolean


  

  
    	isValid


    	True if the network is a valid CX network


    	boolean


  

  
    	modificationTime


    	Time at which the network was last modified


    	timeStamp


  

  
    	name


    	Name or title of the network, not unique, same meaning as dc:title


    	string


  

  
    	nodeCount


    	The number of node objects in the network


    	integer


  

  
    	owner


    	The userName of the network owner


    	string


  

  
    	ownerUUID


    	The UUID of the networks owner


    	string


  

  
    	properties


    	List of NDExPropertyValuePair objects: describes properties of the
networ


    	list


  

  
    	subnetworkIds


    	List of integers which are identifiers of subnetworks


    	list


  

  
    	uri


    	URI of the current network


    	string


  

  
    	version


    	Format is not controlled but best practice is to use a string conforming
to Semantic Versioning


    	string


  

  
    	visibility


    	PUBLIC or PRIVATE. PUBLIC means it can be found or read by anyone,
including anonymous users. PRIVATE is the default, means that it can
only be found or read by users according to their permissions


    	string


  

  
    	warnings


    	List of warning messages produced by the CX network validator


    	list


  





	The properties attribute in the above table represents a list of
attributes where each attribute is a dictionary with the following
fields:





  
    	Property Object Field


    	Description


    	Type


  

  
    	dataType


    	Type of the attribute


    	string


  

  
    	predicateString


    	Name of the attribute.


    	string


  

  
    	value


    	Value of the attribute


    	string


  

  
    	subNetworkId


    	Subnetwork Id of the attribute


    	string


  





	Errors if the network is not found or if the authenticated user does
not have READ permission for the network.


	Anonymous users can only access networks with visibility = PUBLIC.







get_network_as_cx_stream(network_id)


	Returns the network specified by network_id as a CX byte stream.


	This is performed as a monolithic operation, so it is typically
advisable for applications to first use the getNetworkSummary method
to check the node and edge counts for a network before retrieving the
network.







set_network_system_properties(network_id, network_system_properties)


	Sets the system properties specified in network_system_properties
data for the network specified by network_id.


	Network System properties describe the network’s status on the NDEx
server but are not part of the corresponding CX network object.


	As of NDEx V2.0 the supported system properties are:


	readOnly: boolean


	visibility: PUBLIC or PRIVATE.


	showcase: boolean. Controls whether the network will display on
the homepage of the authenticated user. Returns an error if the
user does not have explicit permission to the network.


	network_system_properties format: {property: value, …}, such
as:


	{“readOnly”: True}


	{“visibility”: “PUBLIC”}


	{“showcase”: True}


	{“readOnly”: True, “visibility”: “PRIVATE”, “showcase”: False}.















make_network_private(network_id)


	Sets visibility of the network specified by network_id to private.


	This is a shortcut for setting the visibility of the network to
PRIVATE with the set_network_system_properties method:


	set_network_system_properties(network_id, {“visibility”:
“PRIVATE”}).











make_network_public(network_id)


	Sets visibility of the network specified by network_id to public


	This is a shortcut for setting the visibility of the network to
PUBLIC with the set_network_system_properties method:


	set_network_system_properties(network_id, {“visibility”:
“PUBLIC”}).











set_read_only(network_id, value)


	Sets the read-only flag of the network specified by network_id to
value.


	The type of value is boolean (True or False).


	This is a shortcut for setting readOnly for the network by the
set_network_system_properties method:


	set_network_system_properties(network_id, {“readOnly”: True})


	set_network_system_properties(network_id, {“readOnly”:
False}).











update_network_group_permission(group_id, network_id, permission)


	Updates the permission of a group specified by group_id for the
network specified by network_id.


	The permission is updated to the value specified in the permission
parameter, either READ, WRITE, or ADMIN.


	Errors if the authenticated user making the request does not have
WRITE or ADMIN permissions to the specified network.


	Errors if network_id does not correspond to an existing network.


	Errors if the operation would leave the network without any user
having ADMIN permissions: NDEx does not permit networks to become
‘orphans’ without any owner.







grant_networks_to_group(group_id, network_ids, permission=”READ”)


	Updates the permission of a group specified by group_id for all the
networks specified in network_ids list


	For each network, the permission is updated to the value specified in
the permission parameter. permission parameter is READ, WRITE, or
ADMIN; default value is READ.


	Errors if the authenticated user making the request does not have
WRITE or ADMIN permissions to each network.


	Errors if any of the network_ids does not correspond to an existing
network.


	Errors if it would leave any network without any user having ADMIN
permissions: NDEx does not permit networks to become ‘orphans’
without any owner.







update_network_user_permission(user_id, network_id, permission)


	Updates the permission of the user specified by user_id for the
network specified by network_id.


	The permission is updated to the value specified in the permission
parameter. permission parameter is READ, WRITE, or ADMIN.


	Errors if the authenticated user making the request does not have
WRITE or ADMIN permissions to the specified network.


	Errors if network_id does not correspond to an existing network.


	Errors if it would leave the network without any user having ADMIN
permissions: NDEx does not permit networks to become ‘orphans’
without any owner.







grant_network_to_user_by_username(username, network_id, permission)


	Updates the permission of a user specified by username for the
network specified by network_id.


	This method is equivalent to getting the user_id via
get_user_by_name(username), and then calling
update_network_user_permission with that user_id.







grant_networks_to_user(user_id, network_ids, permission=”READ”)


	Updates the permission of a user specified by user_id for all the
networks specified in network_ids list.







update_network_profile(network_id, network_profile)


	Updates the profile information of the network specified by
network_id based on a network_profile object specifying the
attributes to update.


	Any profile attributes specified will be updated but attributes that
are not specified will have no effect - omission of an attribute does
not mean deletion of that attribute.


	The network profile attributes that can be updated by this method are
‘name’, ‘description’ and ‘version’.







set_network_properties(network_id, network_properties)


	Updates the NetworkAttributes aspect the network specified by
network_id based on the list of NdexPropertyValuePair objects
specified in network_properties.


	This method requires careful use:


	Many networks in NDEx have no subnetworks and in those cases the
subNetworkId attribute of every NdexPropertyValuePair should
not be set.


	Some networks, including some saved from Cytoscape have one
subnetwork. In those cases, every NdexPropertyValuePair should
have the subNetworkId attribute set to the id of that
subNetwork.


	Other networks originating in Cytoscape Desktop correspond to
Cytoscape “collections” and may have multiple subnetworks. Each
subnetwork may have NdexPropertyValuePairs associated with it and
these will be visible in the Cytoscape network viewer. The
collection itself may have NdexPropertyValuePairs associated with
it and these are not visible in the Cytoscape network viewer but
may be set or read by specific Cytoscape Apps. In these cases,
we strongly recommend that you edit these network attributes in
Cytoscape rather than via this API unless you are very familiar
with the Cytoscape data model.






	NdexPropertyValuePair object has these attributes:





  
    	Attribute


    	Description


    	Type


  

  
    	subNetworkId


    	Optional identifier of the subnetwork to which the property applies.


    	string


  

  
    	predicateString


    	Name of the attribute.


    	string


  

  
    	dataType


    	Data type of this property. Its value has to be one of the attribute
data types that CX supports.


    	string


  

  
    	value


    	A string representation of the property value.


    	string


  





	Errors if the authenticated user does not have ADMIN permissions to
the specified network.


	Errors if network_id does not correspond to an existing network.







get_provenance(network_id)


	Returns the Provenance aspect of the network specified by
network_id.


	See the document NDEx Provenance
History [http://www.home.ndexbio.org/network-provenance-history/]
for a detailed description of this structure and best practices for
its use.


	Errors if network_id does not correspond to an existing network.


	The returned value is a Python dict corresponding to a JSON
ProvenanceEntity object:


	A provenance history is a tree structure containing
ProvenanceEntity and ProvenanceEvent objects. It is serialized as
a JSON structure by the NDEx API.


	The root of the tree structure is a ProvenanceEntity object
representing the current state of the network.


	Each ProvenanceEntity may have a single ProvenanceEvent object
that represents the immediately prior event that produced the
ProvenanceEntity. In turn, linked to network of ProvenanceEvent
and ProvenanceEntity objects representing the workflow history
that produced the current state of the Network.


	The provenance history records significant events as Networks are
copied, modified, or created, incorporating snapshots of
information about “ancestor” networks.


	Attributes in ProvenanceEntity:


	uri : URI of the resource described by the ProvenanceEntity.
This field will not be set in some cases, such as a file upload
or an algorithmic event that generates a network without a
prior network as input


	creationEvent : ProvenanceEvent. has semantics of
PROV:wasGeneratedBy properties: array of
SimplePropertyValuePair objects






	Attributes in ProvenanceEvent:


	endedAtTime : timestamp. Has semantics of PROV:endedAtTime


	startedAtTime : timestamp. Has semantics of PROV:endedAtTime


	inputs : array of ProvenanceEntity objects. Has semantics of
PROV:used.


	properties: array of SimplePropertyValuePair.















set_provenance(network_id, provenance)


	Updates the Provenance aspect of the network specified by network_id
to be the ProvenanceEntity object specified by provenance argument.


	The provenance argument is intended to represent the current state
and history of the network and to contain a tree-structure of
ProvenanceEvent and ProvenanceEntity objects that describe the
networks provenance history.


	Errors if the authenticated user does not have ADMIN permissions to
the specified network.


	Errors if network_id does not correspond to an existing network.









Search


search_networks(search_string=”“, account_name=None, start=0, size=100, include_groups=False)


	Returns a SearchResult object which contains:


	Array of NetworkSummary objects (networks)


	the total hit count of the search (numFound)


	Position of the returned elements (start)






	Search_string parameter specifies the search string.


	DEPRECATED: the account_name is optional, but has been
superseded by the search string field userAdmin:account_name If
it is provided, the the search will be constrained to networks owned
by that account.


	The start and size parameter are optional. The default values are
start = 0 and size = 100.


	The optional include_groups argument defaults to false. It enables
search to return a network where a group has permission to access the
network and the user is a member of the group. if include_groups is
true, the search will also return networks based on permissions from
the authenticated user’s group memberships.


	The method find_networks is a deprecated alternate name for
search_networks.







find_networks(search_string=”“, account_name=None, start=0, size=100)


	This method is deprecated; search_networks should be used instead.







get_network_summaries_for_user(account_name)


	Returns a SearchResult object which contains:


	Array of NetworkSummary objects (networks)


	The total hit count of the search (numFound)


	Position of the returned elements (start) for user specified by
acount_name argument.






	The number of found NetworkSummary objects is limited to (will not
exceed) 1000.


	This function will not return networks where a group has permission
to access the network and account_name is a member of the group.


	This function is equivalent to calling search_networks(“”,
account_name, size=1000).







get_network_ids_for_user(account_name)


	Returns a list of network Ids for the user specified by acount_name
argument. The number of found network Ids is limited to (will not
exceed) 1000.


	This function is equivalent to calling
get_network_summaries_for_user(“”, account_name, size=1000), and
then building a list of network Ids returned by the call to
get_network_summaries_for_user.







get_neighborhood_as_cx_stream(network_id, search_string, search_depth=1, edge_limit=2500)


	Returns a network CX byte stream that is a subset (neighborhood) of
the network specified by network_id.


	The subset is determined by a traversal search from nodes identified
by search_string to a depth specified by search_depth.


	edge_limit specifies the maximum number of edges that this query can
return.


	Server will return an error if the number of edges in the result is
larger than the edge_limit parameter.







get_neighborhood(network_id, search_string, search_depth=1, edge_limit=2500)


	The arguments and behavior are the same as
get_neighborhood_as_cx_stream but returns a Python dict
corresponding to a network CX JSON object.









Task


get_task_by_id(task_id)


	Returns a JSON task object for the task specified by task_id.


	Errors if no task found or if the authenticated user does not own the
specified task.













NiceCX Objects


Nodes

create_node(name, represents=None)

Create a new node in the network, specifying the node’s name and
optionally the id of the entity that it represents.


	name: Name for the node


	represents: The ID of the entity represented by the node. Best
practice is to use IDs from standard namespaces and to define
namespace prefixes in the network context.




add_node(node)

Add a node object to the network.


	node: A node object (nicecxModel.cx.aspects.NodesElement)




set_node_attribute(node, attribute_name, values, type=None,
subnetwork=None)

Set the value(s) of an attribute of a node, where the node may be
specified by its id or passed in as an object.


	node: node object or node id


	attribute_name: attribute name


	values: A value or list of values of the attribute


	type: the datatype of the attribute values, defaults to the
python datatype of the values.


	subnetwork: the id of the subnetwork to which this attribute
applies.




get_node_attribute(node, attribute_name, subnetwork=None)

Get the value(s) of an attribute of a node, where the node may be
specified by its id or passed in as an object.


	node: node object or node id


	attribute_name: attribute name


	subnetwork: the id of the subnetwork (if any) to which this
attribute applies.




get_node_attribute_objects(node, attribute_name)

Get the attribute objects for a node attribute name, where the node may
be specified by its id or passed in as an object. The node attribute
objects include datatype and subnetwork information. An example of
networks that include subnetworks are Cytoscape collections stored in
NDEx.


	node: node object or node id


	attribute_name: attribute name




get_node_attributes(node)

Get the attribute objects of a node, where the node may be specified by
its id or passed in as an object.


	node: node object or node id




get_nodes()

Returns an iterator over node ids as keys and node objects as values.




Edges

create_edge(source, target, interaction)

Create a new edge in the network by specifying source-interaction-target


	source: The source node this edge, either its id or the node
object itself.


	target: The target node this edge, either its id or the node
object itself.


	interaction: The interaction that describes the relationship
between the source and target nodes




add_edge(edge)

Add an edge object to the network.


	edge: An edge object (nicecxModel.cx.aspects.EdgesElement)




set_edge_attribute(edge, attribute_name, values, type=None,
subnetwork=None)

Set the value(s) of attribute of an edge, where the edge may be
specified by its id or passed in an object.


	name: attribute name


	values: the values of the attribute


	type: the datatype of the attribute values, defaults to the
python datatype of the values.


	subnetwork: the id of the subnetwork to which this attribute
applies.




get_edge_attribute(edge, attribute_name, subnetwork=None)

Get the value(s) of an attribute of an edge, where the edge may be
specified by its id or passed in as an object.


	edge: edge object or edge id


	attribute_name: attribute name


	subnetwork: the id of the subnetwork (if any) to which this
attribute was applied.




get_edge_attribute_objects(edge, attribute_name)

Get the attribute objects for an edge attribute name, where the edge may
be specified by its id or passed in as an object. The edge attribute
objects include datatype and subnetwork information. An example of
networks that include subnetworks are Cytoscape collections stored in
NDEx.


	edge: node object or node id


	attribute_name: attribute name




get_edge_attributes(edge)

Get the attribute objects of an edge, where the edge may be specified by
its id or passed in as an object.


	edge: edge object or edge id




get_edges()

Returns an iterator over edge ids as keys and edge objects as values.




Network

get_name()

Get the network name

set_name(network_name)

Set the network name

getSummary()

Get a network summary

set_network_attribute(name=None, values=None, type=None,
subnetwork_id=None)

Set an attribute of the network


	name: attribute name


	values: the values of the attribute


	type: the datatype of the attribute values


	subnetwork: the id of the subnetwork (if any) to which this
attribute applies.




get_network_attribute(attribute_name, subnetwork_id=None)

Get the value of a network attribute


	attribute_name: attribute name


	subnetwork: the id of the subnetwork (if any) to which this
attribute was applied.




get_network_attribute_objects(attribute_name)

Get the attribute objects for the network. The attribute objects include
datatype and subnetwork information. An example of networks that include
subnetworks are Cytoscape collections stored in NDEx.

get_network_attributes()

Get the attribute objects of the network.

get_metadata()


	Get the network metadata




set_metadata()


	Set the network metadata




getProvenance()


	Get the network provenance as a Python dictionary having the CX
provenance schema.




set_provenance(provenance)


	Set the network provenance




get_context(context)

Get the @context aspect of the network, the aspect that maps namespace
prefixes to their defining URIs

set_context()

Set the @context aspect of the network, the aspect that maps namespace
prefixes to their defining URIs

get_opaque_aspect(aspect_name)

Get the elements of the aspect specified by aspect_name
(nicecxModel.cx.aspects.AspectElement)


	aspect_name: the name of the aspect to retrieve.




set_opaque_aspect(aspect_name, aspect_elements)

Set the aspect specified by aspect_name to the list of aspect elements.
If aspect_elements is None, the aspect is removed.
(nicecxModel.cx.aspects.AspectElement)

get_opaque_aspect_names()


	Get the names of all opaque aspects







I/O

to_cx()


	Return the CX corresponding to the network.




to_cx_stream()

Returns a stream of the CX corresponding to the network. Can be used to
post to endpoints that can accept streaming inputs

to_networkx()

Return a NetworkX graph based on the network. Elements in the
CartesianCoordinates aspect of the network are transformed to the
NetworkX pos attribute.

to_pandas_dataframe()

Export the network as a Pandas DataFrame.

Example:
my_niceCx.upload_to(uuid=’34f29fd1-884b-11e7-a10d-0ac135e8bacf’,
server=’http://test.ndexbio.org’, username=’myusername’,
password=’mypassword’)

upload(ndex_server, username, password, update_uuid=None)

Upload the network to the specified NDEx server to the account specified
by username and password, return the UUID of the network on NDEx.

Example: my_niceCx.upload_to(‘http://test.ndexbio.org’, ‘myusername’,
‘mypassword’)


	server: The NDEx server to upload the network to.


	username: The username of the account to store the network


	password: The password for the account.


	update_uuid: Instead of creating a new network, update the network
that has this UUID with the content of this NiceCX object.




apply_template(server, username, password, uuid)

Get a network from NDEx, copy its cytoscapeVisualProperties aspect to
this network.


	server: The ndex server host of the network from which the layout
will be copied


	username: Optional username to enable access to a private network


	password: Optional password to enable access to a private network


	uuid: The unique identifier of the network from which the layout
will be copied











to be undocumented…

**any method that works with CX JSON will be an undocumented function
for internal use

addNode(json_obj=None)

Used to add a node to the network.


	name: Name for the node


	represents: The representation for the node. This can be used to
store the normalized id for the node


	json_obj: The cx representation of a node




add_edge_element(json_obj=None, edge) Low level function


	json_obj: The cx representation of an edge




addNetworkAttribute(json_obj=None)





          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to ndex2’s documentation!
        


        		
          NiceCXNetwork module
          
            		
              Methods for building niceCX
              
                		
                  Node methods
                


                		
                  Edge methods
                


                		
                  Network methods
                


              


            


            		
              Methods for accessing niceCX properties
              
                		
                  Node methods
                


                		
                  Edge methods
                


                		
                  Network methods
                


              


            


            		
              Misc niceCX methods
            


            		
              Deprecated NiceCXNetwork methods
            


            		
              Supported data types
            


            		
              Methods for creating niceCX from other data models
            


            		
              Client access to NDEx server API
            


          


        


        		
          ndex2
          
            		
              NiceCXNetwork module
              
                		
                  Methods for building niceCX
                


                		
                  Methods for accessing niceCX properties
                


                		
                  Misc niceCX methods
                


                		
                  Deprecated NiceCXNetwork methods
                


                		
                  Supported data types
                


                		
                  Methods for creating niceCX from other data models
                


                		
                  Client access to NDEx server API
                


              


            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





